حل عددی معادلات با مشتقات جزئی با استفاده از روش لاین

پایان نامه
  • وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده علوم ریاضی
  • نویسنده نجمه نومیدی
  • استاد راهنما جعفر بی آزار
  • تعداد صفحات: ۱۵ صفحه ی اول
  • سال انتشار 1392
چکیده

روش خطوط یک روش نیمه تحلیلی برای حل معادلات دیفرانسیل جزیی خطی یا غیرخطی می باشد، که به کمک تفاضلات متناهی، معادلات دیفرانسیل جزیی را به معادلات دیفرانسیل معمولی مرتبه اول تبدیل می کند. در این پایان نامه ضمن معرفی روش خطوط، از این روش برای حل معادلات دیفرانسیل جزیی از مرتبه اول و دوم استفاده شده است.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاهش نوفه تصاویر نجومی با استفاده از معادلات مشتقات جزئی

استفاده از سیستم­های بینایی مبنای نجومی به‌عنوان روشی ارزان و مناسب به‌منظور تعیین مختصات نقاط می­تواند به‌عنوان روشی کمکی و همچنین جایگزین برای سیستم­های تعیین موقعیت جهانی در نظر گرفته شود. علاوه بر آن با استفاده از این سیستم می‌توان حرکت ماهواره­های جاسوسی را نیز رصد نمود. با توجه به استفاده این سیستم­ها از تصاویر رقومی، کیفیت حاصله نقش مهمی در کیفیت خروجی نهایی خواهد داشت. نوفه‌های ایجاد شد...

متن کامل

تعدیل وردشی شبکه در حل معادلات دیفرانسیل با مشتقات جزئی دو بعدی

در روش وردشی برای تعدیل شبکه، شبکه تعدیل پذیر به عنوان نگاره یک شبکه ثابت یکنواخت روی یک دامنه محاسباتی تحت تبدیل مخنصات مناسب بنا می شود. این تبدیل می نیمم کننده یک تابعک معین می باشد که میزان خطا را در نتایج عددی اندازه می گیرد. در این راستا یک تابع نشانگر تجویز می شود تا تعدیل شبکه را کنترل کند. در این مقاله یک تابعک تولید و تعدیل شبکه که تعریف آن بر نگاشت های همساز روی خمینه ها استوار است، ...

متن کامل

حل عددی معادلات دیفرانسیل با مشتقات جزئی با استفاده از روش معادله مرز-انتگرال و اسپلاین

در این پایان نامه , مسئله سطح آزاد آب در دو فاز حل شده است. در فاز اول با روش المان مرزی, یک بعد از ابعاد مسئله را با استفاده از اتحاد دوم گرین کاهش داده ایم. با بیان حل اساسی برای مسئله, هسته های انتگرال به صورت تحلیلی محاسبه می شود. از آنجایی که محاسبه این انتگرال روی هر مرز به صورت تحلیلی تقریبا غیر ممکن است, با تقسیم مرز و تعریف المان های محلی به صورت توابع لاگرانژ انتگرال روی المان ها تقسی...

حل عددی معادلات بوسینسک تراکم‌ناپذیر با استفاده از روش فشرده ترکیبی مرتبه ششم

حل دقیق معادلات حاکم بر جریان گرانی می‌تواند در تحلیل دینامیک پدیده‌های جوّی و اقیانوسی مرتبط مفید باشد. در این کار معادلات حاکم بر جریان گرانی با تقریب بوسینسک در قالب شارش گرانی Lock exchange با استفاده از روش فشرده ترکیبی مرتبه ششم حل عددی می‌شوند. به‌منظور مقایسه دقت روش فشرده ترکیبی مرتبه ششم با روش‌های مرتبه دوم مرکزی و فشرده مرتبه چهارم، از حل عددی مسئله گردش اقیانوسی استومل استفاده شده ا...

متن کامل

حل عددی معادلات آب کم‌عمق با استفاده از روش فشرده ترکیبی مرتبه ششم

در این تحقیق، حل عددی معادلات آب کم‌عمق غیرخطی در صفحه f برحسب میدان‌های ارتفاع، واگرایی و تاوایی با استفاده از روش فشرده ترکیبی مرتبه ششم مورد بررسی قرار می‌گیرد و نتایج آن با روش‌های مرتبه دوم مرکزی، فشرده مرتبه چهارم، اَبَرفشرده مرتبه ششم و طیفی‌وار مقایسه می‌شود. برای این منظور، یک جت مداری به‌منزلة شرایط اولیه درنظر گرفته می‌شود که با گذشت زمان به ساختارهایی پیچیده با مقیاس کوچک‌تر ...

متن کامل

حل عددی معادلات آب کم عمق با استفاده از روش فشرده

در این مقاله حل عددی شکل پایستار معادلات اب کم عمق در صفحه b با استفاده از روش فشرده مرتبه چهارم ارائه می شود . معادلات آب کم عمق در واقع بیان کننده حرکت یک جو یا اقیانوس یک لایه ای همراه با تقریب هیدوستاتیک می باشند، که در انها فرض می شود چگالی ثابت است و علاوه بر آن جو را خشک و هر دو را بدون اصطکاک فرض می کنند. برای گسسته سازی ، معادلات حاصل با استفاده از روش ADI در دوراستای محور های مختصات ش...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده علوم ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023